

Total Synthesis of Callystatin A, a Potent Cytotoxic Polyketide from the Marine Sponge, Callyspongia truncata

Nobutoshi Murakami, Weiqi Wang, Masashi Aoki, Yasuhiro Tsutsui, Masanori Sugimoto, and Motomasa Kobayashi*

Faculty of Pharmaceutical Sciences, Osaka University, Yamada-oka 1-6, Suita, Osaka 565, Japan

Received 18 December 1997; accepted 12 January 1998

Abstract: A first total synthesis of callystatin A (1), a potent cytotoxic polyketide from the marine sponge Callyspongia truncata, has been achieved by use of an E-selective Wittig olefination and asymmetric Evans aldol condensation as the key reactions. Thus, the absolute stereostructure of 1 previously established by us was confirmed. © 1998 Elsevier Science Ltd. All rights reserved.

During the course of our investigation in search for new bioactive substances from marine organisms, we isolated an extremely potent cytotoxic polyketide (IC50: 10 pg/ml against KB cell; 20 pg/ml against L1210 cell) designated callystatin A (1) from the marine sponge *Callyspongia truncata* through bioassay-guided separation.¹⁾ In addition, the absolute stereostructure of 1 was elucidated by both physicochemical and synthetic means recently.²⁾ The scarcity of natural supply prompted us to engage in total synthesis of 1 for further biological evaluation and confirmation of the absolute stereostructure. Here, we describe the first total synthesis of callystatin A (1).

Chart 1: Retrosynthetic Analysis of Callystatin A (1)

Chart 1 outlines our retrosynthetic analysis for callystatin A (1). Disconnection of the C_{12} - C_{13} double bond gives segments C_1 - C_{12} (2) and C_{13} - C_{22} (3), which could be united by means of a highly *E*-selective Wittig reaction using allylic tributylphosphorus ylide.^{2,3)} Then, an aldehyde 2, containing a

masked α,β -unsaturated δ -lactone moiety, could be constructed using the above-mentioned Wittig reaction again between segments C₁-C₆ (4) and C₇-C₁₂ (5), the latter of which was a building block to synthesize the model compounds for elucidation of the absolute stereostructure of $1.^{2}$) On the other hand, the optical active allylic tributylphosphonium bromide 3 was dissected by application of duplicate asymmetric Evans aldol condensations⁴) followed by a Wittig reaction to afford three synthons, (1-carbethoxyethylidene)triphenylphosphorane (6), (S)-3-(1-oxopropyl)-4-isopropyl-2-oxazolidinone (7), and (S)-2-methylbutan-1-al (8). The execution of this strategy proceeded as follows.

The synthesis of segment C₁-C₁₂ (2) is depicted in Chart 2. Up to date, the asymmetric synthesis of (R)-6-hydoxymethyl-5,6-dihydro- α -pyrone has been reported by Honda ⁵⁾ and Boger ⁶⁾ independently. However, both methods required time-consuming reaction steps and resulted in low total yields. Thus, we applied the methodology of Ghosez et al. 7) and slightly modified it using optically active O-protected glycidol for asymmetric synthesis of 4. Namely, tert-butyldipheylsilylated (TBDPS) S-glycidol 9 was subjected to coupling reaction with methyl 3-phenylsulphonylorthopropionate (10) using n BuLi in the presence of 1,3-dimethylpropyleneurea (DMPU) to afford presumable orthoester 11, which was followed by sequential treatment with 3M aq. H2SO4 for neutralization, p-TsOH for lactonization, and DBU for elimination of phenylsulfinic acid to provide an α,β -unsaturated lactone 12 in 82% overall yield from 9 without purification of the intermediates. The optical purity of 12 was confirmed by comparing the specific rotation of its deprotected form, $[\alpha]^{22}D + 154^{\circ}$ (c=1.0, CHCl₃), with the literature value, $[\alpha]^{25}D + 160^{\circ}$ (c=0.85, CHCl₃).⁶⁾ Then, diisobutylaluminum hydride (DIBAL-H) reduction of 12 followed by PPTS treatment in the presence of isopropanol afforded 13 in 82% yield, which was further converted to the aldehyde 4 almost quantitatively through deprotection and Swern oxidation. Wittig coupling between 4 and 5 was undertaken by LiCH₂S(O)CH₃ treatment in toluene to give only 6E-conjugated diene $14^{2,8}$) selectively in 75% yield. Finally, removal of the p-methoxyphenyl-methyl (MPM) group in 14 with DDQ and subsequent Swern oxidation furnished segment C1-C12 (2) in 82% yield.

Next, the segment C₁₃-C₂₂ (3) was synthesized as depicted in Chart 3. The optically pure aldehyde 8, prepared from commercially available S-amyl alcohol by PCC oxidation, was treated with 7 under the

Chart 2: Synthesis of Segment C_1 - C_{12} (2) Reagents and conditions: **a**) TBDPSCI, imidazole, CH_2CI_2 , 95%, **b**) 10, nBuLi , DMPU, THF, -20~ 5°C, **c**) 3M H_2SO_4 -THF (3:1), **d**) p-TsOH, MS 4A, $CICH_2CH_2CI$, 70°C, **e**) Et_3N , DBU, $CICH_2CH_2CI$, -10°C, 82% from 9, 10 DIBAL-H, CH_2CI_2 , -78°C, **g**) iPrOH , PPTS, PhH, 82%, 2 steps, **h**) TBAF, THF, **i**) (COCI)2, DMSO, CH_2CI_2 , Et_3N , -78°C, 99%, 2 steps, **j**) 5, $LiCH_2S(O)CH_3$, toluene, -78°C to rt, 75%, **k**) DDQ, CH_2CI_2 -0.5% NaHCO3 (9:1), **l**) iPrOH , PPTS, **m**) (COCI)2, DMSO, CH_2CI_2 , Et_3N , -78°C, 82%, 3 steps.

standard conditions of asymmetric Evans aldol condensation to give a C_{18,19}-syn, C_{19,20}-syn adduct **15** predominantly in 98% yield as a 9:1 mixture of diastereoisomers. Removal of the chiral auxiliary of **15** with the aluminum amide reagent⁹⁾ derived from MeONHMe·HCl and AlMe₃ and subsequent protection of the hydroxyl group as its *tert*-butyldimethylsilyl (TBS) ether afforded **16**. DIBAL-H reduction of **16** gave aldehyde **17** in 76% yield, which was again subjected to Evans aldol condensation with **7** to yield exclusively **18** as a single isomer having two syn orientations at C₁₆-C₁₈ (determined by ¹H-NMR) in 85% yield. Careful treatment of **18** with MeONHMe·HCl and AlMe₃ at lower temperature (*i.e.*, from -78°C to 0°C) gave a Weinreb amide **19** in favorable yield (92 %).

In order to distinguish the newly generated hydroxyl group from the t-butyldimethylsililated group for constructing the β-hydroxyketone portion in 1, protection of the hydroxyl group in 19 was examined under various conditions. However, it was found extremely difficult to introduce a protecting group such as triethylsilyl (TES), MPM, tetrahydropyranyl (THP), and 2-methoxypropyl residues. These observations suggested severe steric hindrance and led us to leave the hydroxyl group at C-17 unprotected up to the final stage of total synthesis of 1. The above presumption was also supported by the following behavior of 19. DIBAL-H reduction of 19 proceeded much slower and in unfavorable yield (40 %) of 20 with recovery of 19, while LiAlH4 treatment rapidly furnished 20 in high yield (96 %). Construction of the α -methyl- α , β unsaturated ester moiety by Horner-Wittig reaction using triethyl 2-phosphonopropionate in the presence of lithium hexamethyldisilazide (LHMDS) gave the desired 14-E conjugated ester 21 in unsatisfactory yield (49 %). On the other hand, treatment with (1-carbethoxyethylidene)triphenylphosphorane (6) under neutral conditions gave 21 in high yield (94 %). Upon DIBAL-H reduction and successive CBr4/PPh3 treatment, the ester 21 was transformed into 23 in two steps in 99% yield without any destruction of the secondary hydroxyl group. The geometry of the C_{14} - C_{15} double bond in 22 was defined as E by observation of NOE enhancements between the following pairs of protons, i.e., H-15 and H2-13; 14-H3C and H-16. Finally, 23 was treated with n Bu₃P to furnish the segments C₁₃-C₂₂ (3) quantitatively.

Chart 3: Synthesis of Segment C_{13} - C_{22} (3) Reagents and conditions: **a**) PCC, CH_2CI_2 , $0^{\circ}C$, 23%, **b**) **7**, $^{n}Bu_2BOTf$, Et_3N , THF, $-78 \sim 0^{\circ}C$, 98% (9:1), **c**) AIMe₃, MeONHMe•HCl, CH_2CI_2 , $-20 \sim 0^{\circ}C$, 95%, **d**) TBSOTf, 2,6-lutidine, CH_2CI_2 , $-20^{\circ}C$, quant., **e**) DIBAL-H, THF, $-78^{\circ}C$, 76%, **f**) **7**, $^{n}Bu_2BOTf$, Et_3N , THF, $-78 \sim 0^{\circ}C$, 85%, **g**) AIMe₃, MeONHMe•HCl, CH_2CI_2 , $-78 \sim 0^{\circ}C$, 92%, **h**) LiAIH₄, Et_2O , $0^{\circ}C$, 96%, **i**) **6**, toluene, 94%, **j**) DIBAL-H, CH_2CI_2 , $-78^{\circ}C$, quant., **k**) CBr_4 , Ph_3P , 2,6-lutidine, CH_3CN , 99%, **i**) $^{n}Bu_3P$, CH_3CN , quant.

The final stage toward total synthesis of callystatin A (1) beginning from Wittig coupling between segments C₁-C₁₂ (2) and C₁₃-C₂₂ (3) was carried out as summarized in Chart 4. The two segments were condensed smoothly under the same conditions²⁾ as for preparation of 14 to provide a sole product 24 having the desired 12-E geometry in favorable yield (72%). PCC oxidation of 24 concomitant with hydrolysis of the acetal portion built up δ -lactone and keto-carbonyl moieties at the same time to give 19-O-TBS-callystatin A (25) in 80% yield. Finally, deprotection of the TBS group with HF-pyridine furnished callystatin A (1) in 74% yield. This synthetic compound was identical with the natural callystatin A (1) in all respects ([α]_D, 1 H- and 13 C-NMR, IR, UV, CD, FAB-MS, HPLC, and cytotoxicity), confirming the absolute stereostructure of 1 presented by us.

In summary, the first total synthesis of callystatin A (1) was achieved using an E-selective Wittig reaction to construct the two conjugated diene portions and asymmetric Evans aldol condensation to build up the β -hydroxyketone moiety with four asymmetric centers as the key reactions. The detailed biological activities of callystatin A (1) and structure-activity relationship study are under investigation.

Acknowledgment The authors are grateful to the Naito Foundation, the Houansha Foundation, and the Ministry of Education, Science, Sports, and Culture of Japan for financial support.

References and Notes

- 1. Kobayashi, M.; Higuchi, K.; Murakami, N.; Tajima, H.; Aoki, S. Tetrahedron Lett., 1997, 38, 2859-2862.
- 2. Murakami, N.; Wang, W.; Aoki, M.; Tsutsui, Y.; Higuchi, K.; Aoki, S.; Kobayashi, M. Tetrahedron Lett., 1997, 38, 5533-5536.
- 3. Tamura, R.; Saegusa, K.; Kakihana M.; Oda, D. J. Org. Chem., 1988, 53, 2723-2728.
- 4. Evans, D. A.; Bartroli, J.; Shih, T. L. J. Am. Chem. Soc., 1981, 103, 2127-2129.
- 5. Tsubuki, M.; Kanai, K.; Honda, T. Heterocycles, 1993, 35, 281-288.
- 6. Boger, D. L.; Hikota, M.; Lewis, B. M. J. Org. Chem., 1997, 62, 1748-1753.
- 7. Carretero, J. C.; Ghosez, L. Tetrahedron Lett., 1988, 29, 2059-2062.
- 8. Numbering of each intermediate is in accordance with that of callystatin A (1) to avoid confusion.
- a) Basha, A.; Lipton, M.; Weinreb, S. M. Tetrahedron Lett., 1977, 4171-4174;
 b) Evans, D. A.; Bender, S. L.; Morris, J. J. Am. Chem. Soc., 1988, 110, 2506-2526.